💐Linear Neural Networks for Regression💐
[TOC]
Linear Regression
Basics
- 3.1.2. Vectorization for Speed
- 3.1.3. The Normal Distribution and Squared Loss
- 3.1.4. Linear Regression as a Neural Network
- 3.1.5. Summary
- 3.1.6. Exercises
3.2. Object-Oriented Design for Implementation
3.3. Synthetic Regression Data
- 3.3.1. Generating the Dataset
- 3.3.2. Reading the Dataset
- 3.3.3. Concise Implementation of the Data Loader
- 3.3.4. Summary
- 3.3.5. Exercises
3.4. Linear Regression Implementation from Scratch
- 3.4.1. Defining the Model
- 3.4.2. Defining the Loss Function
- 3.4.3. Defining the Optimization Algorithm
- 3.4.4. Training
- 3.4.5. Summary
- 3.4.6. Exercises
3.5. Concise Implementation of Linear Regression
- 3.5.1. Defining the Model
- 3.5.2. Defining the Loss Function
- 3.5.3. Defining the Optimization Algorithm
- 3.5.4. Training
- 3.5.5. Summary
- 3.5.6. Exercises
3.6. Generalization
- 3.6.1. Training Error and Generalization Error
- 3.6.2. Underfitting or Overfitting?
- 3.6.3. Model Selection
- 3.6.4. Summary
- 3.6.5. Exercises
3.7. Weight Decay
All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.